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1. Explain how connectionist systems process information 

2. Explain how these connectionist systems are implemented using artificial neural 
networks

3. Explain how artificial neural networks evolved from early work on percepton-like 
architectures to modern high performance deep neural networks

4. Explain how modern artificial networks achieve their high performance

Learning Objectives



Certificate I: Understanding AI and Machine Learning in Africa Module 2: The Nature of AI

Course AIML01: Artificial Intelligence – Past, Present, and Future Lecture 2: From Perceptrons to Deep NN; Slide 3

Lecture Contents

1. Connectionism as a form of information processing

2. Timeline of the major developments in connectionism & artificial neural networks

3. Lecture summary

4. Recommended reading & references
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Connectionist AI

• Information represented in a non-symbolic form:
– Image

– Sound

– Signal, ... 

• Processed by propagating it through an 
interconnected network of simple processing 
elements

• Typically implemented as artificial neural networks

• Uses statistical properties rather than logical rules

Credit: Adrian Rosebrock, Deep Learning for Computer Vision, PyImageSearch, 2017
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1982

J. Feldman & D. Ballard
Introduced the term
Connectionist Model

Feldman, J.A. and D.H. Ballard, "Connectionist models and their properties," 
Cognitive Science, 6,205-254, 1982. 

Feldman, J.A., "A connectionist model of visual memory," in Parallel Models 
of Associative Memory, G.E. Hinton and J.A. Anderson (eds.), Lawrence 
Erlbaum Associates, Inc., Publishers, Hillsdale NJ, 1981. 
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1890
https://www.jstor.org/stable/1423317

Connectionism
The Principles of Psychology
Connectionist model of 
associative memory
W. James
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1890

Associative 
Memory

Connectionism
The Principles of Psychology
Connectionist model of 
associative memory
W. James



Certificate I: Understanding AI and Machine Learning in Africa Module 2: The Nature of AI

Course AIML01: Artificial Intelligence – Past, Present, and Future Lecture 2: From Perceptrons to Deep NN; Slide 8

1890

Associative 
Memory

Connectionism
The Principles of Psychology
Connectionist model of 
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W. James
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1890 1949

Hebbian learning:
Unsupervised neural training process

The synaptic strength — the bond between connecting neurons — is increased 
if both neurons are active at the same time 

Neurons that fire together, wire together

Hebbian Learning
The Organization of 
Behavior
D. Hebb

Connectionism
The Principles of Psychology
Connectionist model of 
associative memory
W. James
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1890 1949

The introduction to  Donald Hebb’s book
also contains one of the first usages

of the term connectionism

https://pure.mpg.de/rest/items/item_2346268_3/component/file_2346267/content

Hebbian Learning
The Organization of 
Behavior
D. Hebb

Connectionism
The Principles of Psychology
Connectionist model of 
associative memory
W. James
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1890 1949

1943

Hebbian Learning
The Organization of 
Behavior
D. Hebb

Connectionism
The Principles of Psychology
Connectionist model of 
associative memory
W. James

Artificial Neuron
"A logical calculus immanent 
in nervous activity” 
W. McCulloch & W. Pitts 
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1890

1943 Any statement within propositional logic 
can be represented by a network of simple processing units, 
i.e., a connectionist system 

W. S. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous activity. 
Bulletin of Mathematical Biophysics, 5:115–133, 1943.

1949

Hebbian Learning
The Organization of 
Behavior
D. Hebb

Connectionism
The Principles of Psychology
Connectionist model of 
associative memory
W. James

Artificial Neuron
"A logical calculus immanent 
in nervous activity” 
W. McCulloch & W. Pitts 
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1890 1949

1943 1958

Hebbian Learning
The Organization of 
Behavior
D. Hebb

Connectionism
The Principles of Psychology
Connectionist model of 
associative memory
W. James

Artificial Neuron
"A logical calculus immanent 
in nervous activity” 
W. McCulloch & W. Pitts 

Perceptron
F. Rosenblatt
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1890 1949

1943 1958

Credit: Adrian Rosebrock, Deep Learning for Computer Vision, PyImageSearch, 2017
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1890 1949

1943 1958

Circularity

A / P2

Maximum Dimension

Nuts

Washers

Bolts

Credit: David Vernon, Machine Vision, Prentice-Hall, 1991
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1890 1949

1943 1958

https://wiki.pathmind.com/multilayer-perceptron

The Mark 1 Perceptron Machine

Hebbian Learning
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D. Hebb

Connectionism
The Principles of Psychology
Connectionist model of 
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W. James

Artificial Neuron
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1890 1949

1943 1958

1960

No learning algorithm existed to allow the 
adjustment of the weights of connections 
between the input units and the hidden units

Multilayer Perceptron

Hebbian Learning
The Organization of 
Behavior
D. Hebb

Delta Rule
Supervised learning
for perceptron-like
neural networks
B. Widrow and T. Hoff

Connectionism
The Principles of Psychology
Connectionist model of 
associative memory
W. James

Artificial Neuron
"A logical calculus immanent 
in nervous activity” 
W. McCulloch & W. Pitts 

Perceptron
F. Rosenblatt
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1890 1949

1943 1958

1960

1969

Linear separability: each class can be separated by a line
Perceptron neural networks can be trained to separate 
these classes

Cannot separate these classes with a single line
Perceptron neural networks cannot be trained 
to separate these classes

Research on neural networks and 
connectionism suffered considerably as a result

Hebbian Learning
The Organization of 
Behavior
D. Hebb

Delta Rule
Supervised learning
for perceptron-like
neural networks
B. Widrow and T. Hoff

Connectionism
The Principles of Psychology
Connectionist model of 
associative memory
W. James

Artificial Neuron
"A logical calculus immanent 
in nervous activity” 
W. McCulloch & W. Pitts 

Perceptron
F. Rosenblatt

Limitation of 
Perceptrons
M. Minsky & S. Papert
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Connectionist 
(neural network)

AI Winter
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1890 1949

1943 1958
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1969

1976

1982

1986

The backpropagation algorithm made it possible 
to train multilayer perceptron (MLP) networks

Multilayer Perceptron
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Recurrent neural networks 
have output connections 
that feed back into the 
inputs 
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1890 1949

1943 1958

1960

1969

1976

1982

1986

Hopfield net with four units

https://en.wikipedia.org/wiki/Hopfield_network
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1890 1949

1943 1958

1960

1969

1976

1982

1986

Boltzmann machines 
are a type of stochastic recurrent neural network
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1890 1949

1943 1958

1960

1969

1976

1982

1986

1997

LSTM (Long short-term memory) is a form of 
recurrent neural network that can select 
which information is relevant to remember 
or forget when processing a sequence of 
data or time-varying information

https://towardsdatascience.com/illustrated-guide-to-lstms-and-
gru-s-a-step-by-step-explanation-44e9eb85bf21
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Artificial Neuron
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Perceptron
F. Rosenblatt

Limitation of 
Perceptrons
M. Minsky & S. Papert

Kohonen Nets
Self-organizing Maps
T. Kohonen

Hopfield Net
Recurrent artificial neural network 
J. Hopfield 

LSTM
Long short-term memory
S. Hochreiter & J. Schmidhuber



Certificate I: Understanding AI and Machine Learning in Africa Module 2: The Nature of AI

Course AIML01: Artificial Intelligence – Past, Present, and Future Lecture 2: From Perceptrons to Deep NN; Slide 30

1890 1949

W. McCulloch & W. Pitts 
"A logical calculus immanent 
in nervous activity” 
Foundations of 
Artificial Neural Networks

1943

F. Rosenblatt

The Perceptron

1958

1960

M. Minsky & 
S. Papert

Limitations of 
Perceptron Networks

1969

1976

T. Kohonen
"Kohonen Nets"
Self-organizing Maps

1982

1986

J. Hopfield
Recurrent artificial neural network 
Hopfield Net

S. Hochreiter & 
J. Schmidhuber

LSTM – Long short-term memory

1997

https://awesomeopensource.com/project/HarisIqbal88/PlotNeur
alNet

1998

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278–2324

A convolutional neural network
is similar in principle to a multi-layer perceptron
but they have many more layers which learn the 

features required to do the task instead of having 
to hand-craft them. 

They map from the input space to the output 
space, and, consequently, are often called end-to-
end systems

Hebbian Learning
The Organization of 
Behavior
D. Hebb

Delta Rule
Supervised learning
for perceptron-like
neural networks
B. Widrow and T. Hoff

ART
Adaptive Resonance
Theory 
S. Grossberg

Backpropagation

D. Rumelhart, 
G. Hinton, R. Williams

CNNs
Convolutional 
Neural Networks
Y. LeCun

Connectionism
The Principles of Psychology
Connectionist model of 
associative memory
W. James

1988
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1890 1949

W. McCulloch & W. Pitts 
"A logical calculus immanent 
in nervous activity” 
Foundations of 
Artificial Neural Networks

1943

F. Rosenblatt
The Perceptron

1958

1960

M. Minsky & 
S. Papert
Limitations of 
Perceptron Networks

1969

1976

T. Kohonen
"Kohonen Nets"
Self-organizing Maps

1982

1986

J. Hopfield
Recurrent artificial neural network 
Hopfield Net

S. Hochreiter & 
J. Schmidhuber
LSTM 
Long short-term memory

1997

1998

2012

Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. In: 
Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in Neural Information Processing Systems, vol 25.

1.2 million training images for 1000 classes
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Neural Networks
Y. LeCun

Connectionism
The Principles of Psychology
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W. James

AlexNet
A. Krizhevsky, 
I. Sutskever, & G. Hinton
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2nd AI Winter Neural Net
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...
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Y. LeCun, Deep Learning Hardware: Past, Present, & Future, ISSCC 2019
https://drive.google.com/file/d/17w443t_5Atnwnu-iOrHKUPFik1pThyhx/view

Deep Learning Summer

Much deeper
neural networks

...

Hebbian Learning
The Organization of 
Behavior
D. Hebb

Delta Rule
Supervised learning
for perceptron-like
neural networks
B. Widrow and T. Hoff

ART
Adaptive Resonance
Theory 
S. Grossberg

Backpropagation

D. Rumelhart, 
G. Hinton, R. Williams

CNNs
Convolutional 
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AlexNet
A. Krizhevsky, 
I. Sutskever, & G. Hinton

Deep neural networks have been 
applied successfully in many 
challenging applications. 

The network have 17, 19, 22 or many 
more layers.



Certificate I: Understanding AI and Machine Learning in Africa Module 2: The Nature of AI

Course AIML01: Artificial Intelligence – Past, Present, and Future Lecture 2: From Perceptrons to Deep NN; Slide 35

1890 1949

W. McCulloch & W. Pitts 
"A logical calculus immanent 
in nervous activity” 
Foundations of 
Artificial Neural Networks

1943

F. Rosenblatt
The Perceptron

1958

1960

M. Minsky & 
S. Papert
Limitations of 
Perceptron Networks

1969

1976

T. Kohonen
"Kohonen Nets"
Self-organizing Maps

1982

1986

J. Hopfield
Recurrent artificial neural network 
Hopfield Net

S. Hochreiter & 
J. Schmidhuber
LSTM 
Long short-term memory

1997

1998

2012

Deep Learning Summer

Significant improvement in performance  through the use of

• Specialized layers in deep neural networks (e.g., pooling),

• More advanced learning techniques (e.g., batch normalization and dropout), 

• Techniques to overcome the problem of vanishing gradients (where the error terms become too small to produce 
an improvement in network performance as they are propagated back in a deep network)

• Better understanding of how to adjust the system hyper-parameters during training to improve performance. 

...

Much better 
performance
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CNNs and regional CNNs (RCNNs) 
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in image recognition, object detection 
and localization, face detection, face 
recognition, and object tracking
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New forms of recurrent neural networks are very successful solving  
problems that involve sequences of states, e.g., in natural language, 
by using new recurrent elements, e.g., long short-term memory (LSTM) 
and gated recurrent units (GRU).
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Modern architectures successfully 
combine the power of deep CNNs and 
LSTMs to address problems that 
involve both images and language, 
e.g. automatic image annotation and 
captioning, image retrieval and 
synthesis base on linguistic 
description



Certificate I: Understanding AI and Machine Learning in Africa Module 2: The Nature of AI

Course AIML01: Artificial Intelligence – Past, Present, and Future Lecture 2: From Perceptrons to Deep NN; Slide 40

1890 1949

W. McCulloch & W. Pitts 
"A logical calculus immanent 
in nervous activity” 
Foundations of 
Artificial Neural Networks

1943

F. Rosenblatt
The Perceptron

1958

1960

M. Minsky & 
S. Papert
Limitations of 
Perceptron Networks

1969

1976

T. Kohonen
"Kohonen Nets"
Self-organizing Maps

1982

1986

J. Hopfield
Recurrent artificial neural network 
Hopfield Net

S. Hochreiter & 
J. Schmidhuber
LSTM 
Long short-term memory

1997

1998

2012

Deep Learning Summer

...

https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

GANs
Generative Adversarial Networks

Hebbian Learning
The Organization of 
Behavior
D. Hebb

Delta Rule
Supervised learning
for perceptron-like
neural networks
B. Widrow and T. Hoff

ART
Adaptive Resonance
Theory 
S. Grossberg

Backpropagation

D. Rumelhart, 
G. Hinton, R. Williams

CNNs
Convolutional 
Neural Networks
Y. LeCun

Connectionism
The Principles of Psychology
Connectionist model of 
associative memory
W. James

AlexNet
A. Krizhevsky, 
I. Sutskever, & G. Hinton

Generative adversarial networks, or 
GANs, which work as actor-critic 
systems, has provided the means for 
two learning networks to learn from 
each other and thereby improve the 
performance of both 
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Yielding remarkable results in 
image synthesis, among many 
other applications.
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The Transformer, introduced by 
Google in 2017, has been 
particularly influential in recent 
years. It replaces recurrence with 
attention mechanisms, allowing for 
significantly more parallelization 
than other models such as recurrent 
neural networks
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Generative Pre-trained Transformer 
(GPT) architectures, e.g., GPT-3, 
trained on trillions of words with 
~175 billion machine learning 
parameters, are capable of 
generating natural language text 
that is often indistinguishable from 
that generated by humans
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DALL-E 2 is transformer-based 
system developed by OpenAI to 
generate highly-realistic digital 
images based on natural language 
descriptions of the desired content. 

This image was generated from the 
text "An astronaut riding a horse in 
a photorealistic style".
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Lecture Summary

1. Connectionist AI has its roots in early work in psychology and associative memory

2. Connectionist AI is typically implemented using artificial neural networks

3. Although limited at first, artificial neural networks for the basis of modern 
high-performance deep machine learning 

4. These modern artificial networks achieve their performance by using 

• Many layers of processing
• Very large training data sets, and 
• Very powerful GPU-based computers during the training phase
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