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Learning Objectives

1. Explain how connectionist systems process information

2. Explain how these connectionist systems are implemented using artificial neural
networks

3. Explain how artificial neural networks evolved from early work on percepton-like
architectures to modern high performance deep neural networks

4. Explain how modern artificial networks achieve their high performance
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Lecture Contents

1. Connectionism as a form of information processing
2. Timeline of the major developments in connectionism & artificial neural networks

3. Lecture summary

4. Recommended reading & references
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Connectionist Al

* Information represented in a non-symbolic form:
— Image
— Sound
— Signal, ...

* Processed by propagating it through an e e
iInterconnected network of simple processing \ /
e | e m e ntS Hidden Iayevs_

Credit: Adrian Rosebrock, Deep Learning for Computer Vision, PylmageSearch, 2017

* Typically implemented as artificial neural networks

* Uses statistical properties rather than logical rules
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J. Feldman & D. Ballard

Introduced the term
Connectionist Model

1982

Feldman, J.A. and D.H. Ballard, "Connectionist models and their properties,"
Cognitive Science, 6,205-254, 1982.

Feldman, J.A., "A connectionist model of visual memory," in FParalle/ Models
of Associative Memory, GE. Hinton and J.A. Anderson (eds.), Lawrence
Erlbaum Associates, Inc., Publishers, Hillsdale NJ, 1981.
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Connectionism

The Principles of Psychology
Connectionist model of

associative memory
W. James
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Connectionism

The Principles of Psychology Associative
Connectionist model of

associative memory | Memory
W. James

® /
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Associative j[>
Memory ]

W. James Rk A
P %

Connectionism

The Principles of Psychology
Connectionist model of
associative memory
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Connectionism

The Principles of Psychology
Connectionist model of
associative memory

W. James

Hebbian Learning

The Organization of
Behavior
D. Hebb

Hebbian learning:

Unsupervised neural training process
The synaptic strength — the bond between connecting neurons — is increased
If both neurons are active at the same time

Neurons that fire together, wire together

1949
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The introduction to Donald Hebb’s book
also contains one of the first usages

Connectionism Hebbian Learning o
The Principles of Psychology  The Organization of of the term connectionism
Connectionist model of Behavior
associative memory D. Hebb Introduction xix
W. James Any frequently repeated, particular stimulation will lead to
the slow develop of a “cell bly,” a diffuse
‘ . comprising cells n the cortex and diencephalon (and also, per-

haps, m the basal gangha of the cerebrum), capable of actng
briefly as a closed system, delivening facihitation to other such
systems and usually having a specific motor facilitahon A seres
of such events conshtutes a “phase sequence”—the thought
process Each assembly action may be aroused by a precedng
assembly, by a sensory event, or—normally—by both The cen-
tral facilitation from one of these activities on the next 1s the
prototype of “attention” The theory proposes that i this cen-
tral facilitation, and 1ts varied rek hip to sensory

lies the answer to an issue that 1s made nescapable by Hum-
phrey’s (1940) penetrating review of the problem of the direc-
tion of thought.

.—.— S . The kind of cortical ization d d n the preced

paragraph 1s what 1s regarded as essental to adult waking be-
havior It 1s proposed also that there 1s an alternate, “intrmnsic”
1 890 1 9 49 orgamzation, occurnng 1n sleep and m infancy, which consists
of hypersynchrony n the finng of cortical cells But besides
these two forms of cortical organization there may be disorgani-
zation Itis d that the bly depend: pletely on
a very delicate timing which might be disturbed by metabolic
changes as well as by sensory events that do not accord with the
pre-existent central process When thus 1s transient, 1t 15 c

of the
switchboard vanety, though 1t does not deal n direct connec-
tions between afferent and efferent pathways not an “S-R” psy-
chology, if R means a I D The serve
rather to establish autonomous central actvities, which then
are the basis of further learning In accordance with modern
physiological 1deas, the theory also utilizes local field processes
and grad following the lead particularly of Marshall and
Talbot (1942) It does not, further, make any smgle nerve cell
or pathway essential to any habit or perception Modern physi-
ology has presented psychology with new opportunities for the
synthesis of divergent theories and previously unrelated data,
and 1t 15 my mtent to take such advantage of these opportum-
ties as I can.

https://pure.mpg.de/rest/items/item_2346268_3/component/file_2346267/content
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Connectionism Hebbian Learning
The Principles of Psychology = The Organization of

Connectionist model of Behavior
associative memory D. Hebb
W. James

® ®

Artificial Neuron

"A logical calculus immanent
in nervous activity”
W. McCulloch & W. Pitts
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LOGICAL CALCULUS FOR NERVOUS ACTIVITY 105

Connectionism Hebbian Learning
The Principles of Psychology = The Organization of
Connectionist model of Behavior
associative memory D. Hebb
W. James

® ®

Any statement within propositional logic
~——:-- ) 4 ® can be represented by a network of simple processing units,
1890 1949 ..e., @ connectionist system

Artificial Neuron , ,
i . } Figure 1. The neuron ¢, is always marked with the numeral i upon the body of the
A logical calculus immanent cell, and the corresponding action is denoted by “N'” with i s subscript, as in the text:

. PR

in nervous activity W. 5. McCulloch and W. tts. Alogical calculus of ideas immanent in nervous activity
. Bulletin of Mathematical Biophysics, 5:115-133, 1943,

W. McCulloch & W. Pitts
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Connectionism Hebbian Learning
The Principles of Psychology = The Organization of

Connectionist model of Behavior
associative memory D. Hebb
W. James
® ®
1943 1958
—0—---—9 - ®
1890 1949
o [
Artificial Neuron Perceptron
"A logical calculus immanent F. Rosenblatt

in nervous activity”
W. McCulloch & W. Pitts
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Connectionism Hebbian Learning
The Principles of Psychology = The Organization of

Connectionist model of Behavior
associative memory D. Hebb
W. James Inputs
® ® Weights
@\ W
Weighted Step
Sum Function
1943 1958 @\ -
2
—0—---—9 - ®
1890 1949 @ "
Wy
o o
Art|f|C|a| Neuron Pe rce ptron Credit: Adrian Rosebrock, Deep Learning for Computer Vision, PylmageSearch, 2017
"A logical calculus immanent F. Rosenblatt

in nervous activity”
W. McCulloch & W. Pitts
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Connectionism Hebbian Learning
The Principles of Psychology = The Organization of

Connectionist model of Behavior
associative memory D. Hebb
W. James

® ®

1958

L
1890 1949
o [
Artificial Neuron Perceptron

"A logical calculus immanent
in nervous activity”
W. McCulloch & W. Pitts

F. Rosenblatt
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Connectionism Hebbian Learning
The Principles of Psychology = The Organization of

Connectionist model of Behavior
associative memory D. Hebb
W. James

® ®

1943 1958

o [
Artificial Neuron Perceptron
"A logical calculus immanent F. Rosenblatt

in nervous activity”
W. McCulloch & W. Pitts
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Connectionism Hebbian Learning
The Principles of Psychology = The Organization of

Connectionist model of Behavior
associative memory D. Hebb
W. James

® ®

1958

L
1890 1949
o [
Artificial Neuron Perceptron

"A logical calculus immanent
in nervous activity”
W. McCulloch & W. Pitts

F. Rosenblatt
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Connectionism Hebbian Learning
The Principles of Psychology = The Organization of

Connectionist model of Behavior
associative memory D. Hebb
W. James
® ®
1943 1958
—0—---—§ - ®
1890 1949
o [
Artificial Neuron Perceptron
"A logical calculus immanent F. Rosenblatt

in nervous activity”
W. McCulloch & W. Pitts
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https://wiki.pathmind.com/multilayer-perceptron
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Connectionism

Hebbian Learning Delta Rule

The Principles of Psychology = The Organization of Supervised learning
Connectionist model of Behavior for perceptron-like
associative memory D. Hebb neural networks
W. James B. Widrow and T. Hoff
® ® ®
o —Q— === - - e

Artificial Neuron

"A logical calculus immanent
in nervous activity”

W. McCulloch & W. Pitts

1960

Perceptron
F. Rosenblatt
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Multilayer Perceptron

No learning algorithm existed to allow the
adjustment of the weights of connections
between the input units and the hidden units

Carnegie Mellon University Module 2: The Nature of Al
Africa Lecture 2: From Perceptrons to Deep NN; Slide 21



Connectionism

The Principles of Psychology = The Organization of Supervised learning
Connectionist model of Behavior for perceptron-like these classes
associative memory D. Hebb neural networks
W. James B. Widrow and T. Hoff
® ® ®
%
1943 1958 1969
~——--- ® @ o—O ®

Artificial Neuron

"A logical calculus immanent
in nervous activity”

W. McCulloch & W. Pitts

1960 O O

Hebbian Lea rning Delta Rule Linear separability: each class can be separated by a line
Perceptron neural networks can be trained to separate

y A

® [
Perceptron Limitation of
F. Rosenblatt Perceptrons

M. Minsky & S. Papert
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Cannot separate these classes with a single line
Perceptron neural networks cannot be trained
to separate these classes

Research on neural networks and
connectionism suffered considerably as a result
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Connectionism Hebbian Learning Delta Rule

The Principles of Psychology = The Organization of Supervised learning
Connectionist model of Behavior for perceptron-like
associative memory D. Hebb neural networks
W. James B. Widrow and T. Hoff
® ® ®
1943 1958 1969
—0—---—@ . - — -
1890 1949 1960 .
Connectionist
(neural network)
Al Winter
o [ [
Artificial Neuron Perceptron Limitation of
"A logical calculus immanent F. Rosenblatt Pe rceptro ns
in nervous activity” .
W. McCulloch & W. Pitts M. Minsky & 5. Papert
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Connectionism

Hebbian Learning

Delta Rule ART

The Principles of Psychology = The Organization of Supervised learning Adaptive Resonance
Connectionist model of Behavior for perceptron-like Theory
associative memory D. Hebb neural networks S. Grossberg
W. James B. Widrow and T. Hoff
® ® ® ®
1943 1958 1969 1982
—0—--- ® o — L 4 @ @
1890 1949 1960 1976
o [ o [
Artificial Neuron Perceptron Limitation of Kohonen Nets
"A logical calculus immanent F. Rosenblatt Pe rceptro ns Self-organizing Maps

in nervous activity”
W. McCulloch & W. Pitts
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Connectionism

Hebbian Learning

Delta Rule ART Backpropagation

The Principles of Psychology = The Organization of Supervised learning Adaptive Resonance
Connectionist model of Behavior for perceptron-like Theory D. Rumelhart,
associative memory D. Hebb neural networks S. Grossberg G. Hinton, R. Williams
W. James B. Widrow and T. Hoff
® ® ® ® ® Multilayer Perceptron
1943 1958 1969 1982
~——--- - - - — L 4 @ @ @
1890 1949 1960 1976 1986
o [ [ [
Artificial Neuron Perceptron Limitation of Kohonen Nets The backpropagation algorithm made it possible
"A logical calculus immanent F. Rosenblatt Perceptrons Self-organizing Maps to train multilayer perceptron (MLP) networks
in nervous activity” T. Kohonen

W. McCulloch & W. Pitts
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Connectionism
The Principles of Psychology

Hebbian Learning
The Organization of

Delta Rule ART

Supervised learning

Backpropagation

Adaptive Resonance

Connectionist model of Behavior for perceptron-like Theory D. Rumelhart,
associative memory D. Hebb neural networks S. Grossberg G. Hinton, R. Williams
W. James B. Widrow and T. Hoff
® ® ® ® ®
1943 1958 1969 1982
—0—--- ® ® C— - - *—o '
1890 1949 1960 1976 1986
o [ [ [
Artificial Neuron Perceptron Limitation of Kohonen Nets Recurrent neural networks
" . : .. have output connections
A logical calculus immanent F.R blatt -
. g e osenbia Perceptrons Self-organizing Maps that feed back into the
in nervous activity M. Minskv & S. Papert T. Kohonen .
W. McCulloch & W. Pitts ' y &> Fap inputs
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Delta Rule ART Backpropagation

Supervised learning Adaptive Resonance

Hebbian Learning
The Organization of

Connectionism
The Principles of Psychology

Connectionist model of Behavior for perceptron-like Theory D. Rumelhart,
associative memory D. Hebb neural networks S. Grossberg G. Hinton, R. Williams . . .
W. James B. Widrow and T. Hoff Hopfield net with four units
® ® ® ® ® I
1943 1958 1969 1982 - >
|~
—o—---—@ = - » ® — =
1890 1949 1960 1976 1986 - >
F
e >
o [ [ [ |
Artificial Neuron Perceptron Limitation of Kohonen Nets

"A logical calculus immanent F. Rosenblatt Self-organizing Maps

Perceptrons

(/r\,/n:/lr(‘:/ggﬁ:(:c}f/;:t\)llv Pitts M. Mlnsky & S. Papert T. KOhonen https://en.wikipedia.org/wiki/Hopfield_network
Hopfield Net
Recurrent artificial neural network
J. Hopfield
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Connectionism

Hebbian Learning

Delta Rule ART Backpropagation

The Principles of Psychology = The Organization of Supervised learning Adaptive Resonance
Connectionist model of Behavior for perceptron-like Theory D. Rumelhart,
associative memory D. Hebb neural networks S. Grossberg G. Hinton, R. Williams
W. James B. Widrow and T. Hoff
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1943 1958 1969 1982
—0—---—9 - - - ® - —
1890 1949 1960 1976 1986
o [ [ [
Artificial Neuron Perceptron Limitation of Kohonen Nets
"A logical calculus immanent F. Rosenblatt Pe rceptro ns Self-organizing Maps )
in nervous activity” M. Minsky &S, Papert T. Kohonen Boltzmann machines
W. McCulloch & W. Pitts - VINSKyY & 5. Faper . are a type of stochastic recurrent neural network
Hopfield Net
Recurrent artificial neural network
J. Hopfield
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Connectionism
The Principles of Psychology

Connectionist model of Behavior
associative memory D. Hebb
W. James

® ®

Hebbian Learning
The Organization of

Delta Rule ART Backpropagation
Supervised learning Adaptive Resonance

for perceptron-like Theory D. Rumelhart,

neural networks S. Grossberg G. Hinton, R. Williams

B. Widrow and T. Hoff

1958

1969 1982 1997

Artificial Neuron

"A logical calculus immanent
in nervous activity”

W. McCulloch & W. Pitts

1960

Perceptron
F. Rosenblatt
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1976 1986
%

sigmoid

LSTM (Long short-term memory) is a form of
recurrent neural network that can select
which information is relevant to remember
or forget when processing a sequence of
data or time-varying information

® 8 © K+
tanh

pointwise pointwise vector

https://towardsdatascience.com/illustrated-guide-to-Istms-and-

‘ . . gru-s-a-step-by-step-explanation-44e9eb85bf21

Limitation of Kohonen Nets LSTM

Pe rceptro ns Self-organizing Maps Long short-term memory

M. Minsky & S. Papert T. Kohonen S. Hochreiter & J. Schmidhuber
Hopfield Net
Recurrent artificial neural network
J. Hopfield
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Connectionism Hebbian Learning Delta Rule ART Backpropagation CNNs

The Principles of Psychology = The Organization of Supervised learning Adaptive Resonance Convolutional
Connectionist model of Behavior for perceptron-like Theory D. Rumelhart, Neural Networks
associative memory D. Hebb neural networks S. Grossberg G. Hinton, R. Williams Y. LeCun
W. James B. Widrow and T. Hoff

® ® ® ® ® ®

1943 1958 1969 1982 1997
—0—--- ® ® ™o ® ® *—o *-—0 °
1988

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
3232 6@28x28

A convolutional neural network

is similar in principle to a multi-layer perceptron
but they have many more layers which learn the
features required to do the task instead of having
to hand-craft them.

S2: f. maps
6@14x14

They map from the input space to the output

| space, and, consequently, are often called end-to-
‘ Full connection Gaussian connections end systems

Convolutions Subsampling Convolutions  Subsampling Full connection

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278-2324
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Connectionism Hebbian Learning Delta Rule ART Backpropagation CNNs

The Principles of Psychology = The Organization of Supervised learning Adaptive Resonance Convolutional
Connectionist model of Behavior for perceptron-like Theory D. Rumelhart, Neural Networks
associative memory D. Hebb neural networks S. Grossberg G. Hinton, R. Williams Y. LeCun
W. James B. Widrow and T. Hoff

® ® ® ® ® ®

1943 1958 1969 1982 1997 2012

*~—0—--- ® ® *—o ® @ *—@ *—0 ®

R R 93 %7 @ \dense
13 X 13 .
.
o) W el o
pEES 13 ense iden:
' AlexNet
192 128 Max A. Krizhevsky,
2048 .
Max 128 Max pooling . Sutskever, & G. Hinton
pooling pooling
1.2 million training images for 1000 classes Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. In:

Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in Neural Information Processing Systems, vol 25.
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Connectionism Hebbian Learning Delta Rule ART Backpropagation CNNs
The Principles of Psychology = The Organization of Supervised learning Adaptive Resonance Convolutional
Connectionist model of Behavior for perceptron-like Theory D. Rumelhart, Neural Networks
associative memory D. Hebb neural networks S. Grossberg G. Hinton, R. Williams Y. LeCun
W. James B. Widrow and T. Hoff
® ® ® ® ® ®
1943 1958 1969 1982 1997 2012
—0—---—@ o — ® ® o 67 " P
Y Y
2" Al Winter  Neural Net
Spring
[
AlexNet

Certificate I: Understanding Al and Machine Learning in Africa
Course AIMLO1: Artificial Intelligence - Past, Present, and Future

Carnegie Mellon University

Africa

A. Krizhevsky,
I. Sutskever, & G. Hinton

Module 2: The Nature of Al
Lecture 2: From Perceptrons to Deep NN; Slide 32



Connectionism Hebbian Learning Delta Rule ART Backpropagation CNNs
The Principles of Psychology = The Organization of Supervised learning Adaptive Resonance Convolutional
Connectionist model of Behavior for perceptron-like Theory D. Rumelhart, Neural Networks
associative memory D. Hebb neural networks S. Grossberg G. Hinton, R. Williams Y. LeCun
W. James B. Widrow and T. Hoff
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Deep Learning Summer

AlexNet

A. Krizhevsky,
I. Sutskever, & G. Hinton
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Connectionism Hebbian Learning Delta Rule

ART Backpropagation CNNs
The Principles of Psychology = The Organization of Supervised learning Adaptive Resonance Convolutional
Connectionist model of Behavior for perceptron-like Theory D. Rumelhart, Neural Networks
associative memory D. Hebb neural networks S. Grossberg G. Hinton, R. Williams Y. LeCun
W. James B. Widrow and T. Hoff Much deeper
¢ ¢ ¢ ¢ ® g neural networks
1943 1958 1969 1982 1997
—0—--- ® ® —eo - - *—o *—0
VGG 2 s.: E _g_ § % _g % % _Ea % % g % % _'g é § % E Deep Learning Summer
Deep neural networks have been [Simonyan2013] |E/ '8 '8 &8 § § § § § E 882 BEE zuw B
applied successfully in man "
PP ] ) y' Y GoogLeNet -
challenging applications. Szegedy 2014] H)
o-E-auu s ®
The network have 17, 19, 22 or man
| T Y AlexNet
more layers. ResNet

[He et al. 2015]

DenseNet
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Dense Block 1

[Huang et al 2017] '!g R

Dense Block 2
s W T T

Dense Block 3
TO—ve_v0-_vo

Y. LeCun, Deep Learning Hardware: Past, Present, & Future, ISSCC 2019
https://drive.google.com/file/d/17w443t_S5Atnwnu-iOrHKUPFik1pThyhx/view
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Connectionism Hebbian Learning Delta Rule ART Backpropagation CNNs
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Significant improvement in performance through the use of
* Specialized layers in deep neural networks (e.g., pooling),
* More advanced learning techniques (e.g., batch normalization and dropout),

* Techniques to overcome the problem of vanishing gradients (where the error terms become too small to produce
an improvement in network performance as they are propagated back in a deep network)

* Better understanding of how to adjust the system hyper-parameters during training to improve performance.
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New forms of recurrent neural networks are very successful solving

problems that involve sequences of states, e.g., in natural language,

by using new recurrent elements, e.g., long short-term memory (LSTM)

and gated recurrent units (GRU).

memory
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Generative Pre-trained Transformer
(GPT) architectures, e.g., GPT-3,
trained on trillions of words with
~175 billion machine learning
parameters, are capable of
generating natural language text
that is often indistinguishable from
that generated by humans

A robot wrote this entire article. Are you
scared yet, human?
GPT-3

We asked GPT-3, OpenAl's powerful new language generator, to
write an essay for us from scratch. The assignhment? To
convince us robots come in peace

For more about GPT-3 and how this essay was written and
edited, please read our editor's note below

https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
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DALL-E 2 is transformer-based
system developed by OpenAl to
generate highly-realistic digital
images based on natural language
descriptions of the desired content.
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This image was generated from the I. Sutskever, & G. Hinton
text "An astronaut riding a horse in

a photorealistic style".

https://openai.com/dall-e-2/
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Lecture Summary

1. Connectionist Al has its roots in early work in psychology and associative memory
2. Connectionist Al is typically implemented using artificial neural networks

3. Although limited at first, artificial neural networks for the basis of modern
high-performance deep machine learning

4. These modern artificial networks achieve their performance by using

 Many layers of processing
* Very large training data sets, and
*  Very powerful GPU-based computers during the training phase
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Recommended Reading

Cangelosi, A. and Vernon, D. (2022). "Artificial Intelligence: Powering the Fourth Industrial Revolution”, in EPS
Grand Challenges: Physics for Society at the Horizon 2050, coordinated by the European Physical Society.
http://vernon.eu/publications/2022_Cangelosi_Vernon.pdf

van Veen, F. The Neural Network Zoo, The Asimov Institute.
https://www.asimovinstitute.org/neural-network-zoo/

Wang, H. and Rgj, B. (201 7). On the Origin of Deep Learning, arXiv:1702.0/7800v4.
https://arxiv.org/pdf/1702.07800.pdf
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